Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pathogens ; 12(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003803

RESUMO

Clubroot disease, caused by the protist pathogen Plasmodiophora brassicae, is an emerging threat to cruciferous crops, including oilseed rape (Brassica napus L.). Most of the current commercial cultivars are highly susceptible, and efficient management tools are lacking practical implementation. Over three years and three experimental periods, we studied the effects of isotianil in comparison with Bacillus amyloliquefaciens QST713-HiCFU against clubroot disease under greenhouse experiments. Our results show control effects, which were strongly dependent on seasons, host plant genotype, and clubroot isolates: isotianil and B. amyloliquefaciens QST713-HiCFU reduced disease severity consistently at variable, but field-relevant spore concentrations of clubroot isolates; with seed treatments showing superior effects compared to drench applications. The co-application of isotianil with B. amyloliquefaciens QST713-HiCFU could, in some cases, increase the efficacy. Interestingly, all studied hybrids reacted to treatments, albeit to a somewhat different extent. When tested against a field isolate, the results obtained with the single spore isolate were partially confirmed but with greater variability. Overall, the generally positive effects of isotianil and B. amyloliquefaciens QST713-HiCFU on the reduction of clubroot were repeatedly observed. The inoculation of clubroot disease with different spore counts indicates a dose-response effect for tested products. This study highlights the importance of performing experiments holistically over multiple, consecutive seasons, with various isolates, application types, and different genetic resources of host plants.

2.
Environ Microbiome ; 18(1): 43, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245023

RESUMO

BACKGROUND: The root-associated microbiome has been of keen research interest especially in the last decade due to the large potential for increasing overall plant performance in agricultural systems. Knowledge about the impact of above ground plant disturbances on the root-associated microbiome remains limited. We addressed this by focusing on two potential impacts, foliar pathogen infection alone and in combination with the application of a plant health protecting product. We hypothesized that these lead to plant-mediated responses in the rhizosphere microbiota. RESULTS: The effects of an infection of greenhouse grown apple saplings with either Venturia inaequalis or Podosphaera leucotricha as foliar pathogen, as well as the combined effect of P. leucotricha infection and foliar application of the synthetic plant health protecting product Aliette (active ingredient: fosetyl-aluminum), were studied on the root-associated microbiota. The bacterial community structure of rhizospheric soil and endospheric root material was characterized post-infection, using 16S rRNA gene amplicon sequencing. With increasing disease severity both pathogens led to changes in the rhizosphere and endosphere bacterial communities in comparison to uninfected plants (explained variance up to 17.7%). While the preventive application of Aliette on healthy plants two weeks prior inoculation did not induce changes in the root-associated microbiota, a second later application on the diseased plants decreased disease severity and resulted in differences of the rhizosphere bacterial community between infected and several of the cured plants, though differences were overall not statistically significant. CONCLUSIONS: Foliar pathogen infections can induce plant-mediated changes in the root-associated microbiota, indicating that above ground disturbances are reflected in the below-ground microbiome, even though these become evident only upon severe leaf infection. The application of the fungicide Aliette on healthy plants itself did not induce any changes, but the application to diseased plants helped the plant to regain the microbiota of a healthy plant. These findings indicate that above ground agronomic management practices have implications for the root-associated microbiome, which should be considered in the context of microbiome management strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...